WHITE LED STEP-UP CONVERTER

FEATURES

- Inherently Matched LED Current
- Drives Up to 8 LEDs from a 3.6V Supply
- No External Schottky Diode Required
- 1.2MHz Switching Frequency
- Automatic Soft-Start
- Open LED Protection
- High Efficiency: 81\%
- Requires Only 0.22uF Output Capacitor
- Low Profile (1mm) SOT-23 Packaging

APPLICATION

- Cellular Phones
- PDAs, Handheld Computers
- Digital Cameras
- MP3 Players
- GPS Receivers

DESCRIPTION

The FSP3307 IS step-up DC/DC converters designedtodriveup to six LEDs in series fromaLi-lon cell. Series connection of the LEDs provides identical LED currents and eliminates the need for ballast resistors. These devices integratethe Schottky dioderequired externally on competing devices. Additional features include output voltage limiting when LEDs aredisconnected, onepin shutdown and dimming control. The FSP3307has internal soft-start.

TheFSP3307switches at 1.2 MHz , allowing the use of tiny external components. Constant frequency switching results inlow input noiseand asmall output capacitor. Just 0.22μ Fis required for 4-, 6- or 8-LED applications. The FSP3307 is available in low profile(1mm)6-lead

TYPICAL APPLICATION

L1
$22 \mu \mathrm{H}$

C1, C2: X5R OR X7R DIELECTRIC
L1: MURATA LCH32CN220

Figure 1. Li-lon Powered Driver for Eight White LEDs

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Input Voltage (V_{iN}) 16 V
SW Voltage 36 V
B Voltage 2 V
CTRL Voltage 10 V
Operating Temperature Range (Note 2) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$Maximum Junction Temperature$125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

SOT-23-6

ELECTRICAL CHARACTERISTICS

The - denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{I N}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTRL}}=3 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage			2.7			V
Maximum Operating Voltag					16	V
Feedback Voltage	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		188	200	212	mV
円 Pin Bias Current			10	35	100	nA
Supply Current	Not Switching $\mathrm{CTRL}=0 \mathrm{~V}$		$\begin{aligned} & 1.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{uA} \end{aligned}$
Switching Frequency			0.8	1.2	1.6	MHz
Maximum Duty Oycle		\bullet	90	93		\%
Switch Qurrent Limit		\bullet	225	340		mA
Switch V ${ }_{\text {CESAT }}$	$\mathrm{I}_{\text {SW }}=250 \mathrm{~mA}$			30		mV
Switch Leakage Ourrent	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$			0.01	5	uA
$\mathrm{V}_{\text {CTRL }}$ for Full LED Ourrent			1.8			V
$\mathrm{V}_{\text {CTRL }}$ to Shut Down Chip					50	mV
CTRL Pin Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 48 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	uA uA uA
Soft-Start Time				600		$\mu \mathrm{s}$
Schottky Forward Drop	$\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$			0.7		V
Schottky Leakage Ourrent	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$				4	uA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The FSP3307are guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICALA PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

$\mathbf{V}_{\text {OUT }}$ (Pin 1): Output Pin. Connect to output capacitor and LEDs. Minimize trace between this pin and output capacitor to reduce 日MI.

GND (Pin 2): Ground Pin. Connect directly to local ground plane.
FB (Pin 3): Feedback Pin. Reference voltage is 200 mV . Connect LEDs and a resistor at this pin. LED current is determined by the resistance and CTRL pin voltage:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{LE}} \approx \frac{200 \mathrm{mV}}{\mathrm{R}_{\mathrm{B}}} \text { When } \mathrm{V}_{\mathrm{CTRL}}>1.8 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L} \mathrm{\oplus}} \approx \frac{\mathrm{~V}_{\mathrm{CTRL}}}{5 \cdot R_{B}} \text { When } \mathrm{V}_{\mathrm{CTRL}}<1 \mathrm{~V}
\end{aligned}
$$

CTRL (Pin 4): Dimming Control andShutdownPin. Ground this pin to shut down the device. When $\mathrm{V}_{\text {CTRL }}$ is greater than about 1.8 V , full-scaleLED current is generated. When $\mathrm{V}_{\mathrm{CTRL}}$ is less than 1 V , LED current is reduced.
$V_{\text {IN }}$ (Pin 5): Input Supply Pin. Must be locally bypassed with a $1 \mu \mathrm{FX} 5 \mathrm{R}$ or X 7 R type ceramic capacitor.

SW (Pin 6): Switch Pin. Connect inductor here.

BLOCK DIAGRAM

Figure 2. FSP3307 Block Diagram

APPLICATIONS INFORMATION

Operation

The FSP3307uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can bebest understood by referring to the block diagram in Figure 2. At the start of each oscillator cycle, theSRlatch is set, which turns onthepower switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A 2 , the SRlatch is reset turning off the power switch. The level at the negative input of A 2 is set by the error amplifier A1, and is simply an amplified version of the difference betweenthefeedback voltageand thereference voltage of 200 mV . In this manner, the error amplifier sets the correct peak current level to keep theoutput in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered. The CTRL pin voltage is used to adjust the referencevoltage.

Minimum Output Current

The FSP3307can drive a 3 -LED string at 1.5 mA LED current without pulse skipping. As current is further reduced, the device will begin skipping pulses. This will
result in some low frequency ripple, although the LED current remains regulated on an average basis down to zero. The photo in Figure 3a details circuit operation driving three white LEDs at a 1.5 mA load. Peak inductor current is less than 40 mA and the regulator operates in discontinuous mode, meaning the inductor current

Figure 3. Switching Waveforms

APPLICATIONS INFORMATION

reaches zero during thedischargephase. After theinductor current reaches zero, the SW pin exhibits ringing due to the LCtank circuit formed by the inductor in combination with switch and diode capacitance. This ringing is not harmful; far less spectral energy is contained in the ringing than in the switch transitions. The ringing can be damped by application of a 300Ω resistor across the inductor, although this will degrade efficiency. Because of thehigher switching frequency, Thephoto in Figure3b detials circuit oderation drivina three white LEDs at a0.2mAload. Peak inductor current is less than 30 mA .

Inductor Selection

A 22μ Hinductor is recommended for most FSP3307 applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.2MHz and low DCR (copper wire resistance). Some inductors in this category with small size are listed in Table 1. The efficiency comparison of different inductors is shown in Figure 4a.

Table 1. Recommended Inductors

PART NUMBER	DCR (Ω)	CURRENT RATING (mA)	MANUFACTURER

Figure 4. Efficiency Comparison of Different Inductors

Capacitor Selection

Thesmall size of ceramic capacitors makes them ideal for FSP3307 applications. X5Rand X7Rtypesarerecommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or Z5U. A 1μ F input capacitor and a $0.22 \mu \mathrm{~F}$ output capacitor are sufficient for most FSP3307 applications.

Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	PHONE	URL
Taiyo Yuden	$408-573-4150$	www.t-yuden.com
Murata	$814-237-1431$	www.murata.com
Kemet	$408-986-0424$	www.kemet.com

APPLICATIONS INFORMATION

Soft-Start

The FSP3307 has an internal soft-start circuit to limit the input current during circuit start-up. The circuit start-up waveforms are shown in Figure 5.

Figure 5. Start-Up Waveforms

Inrush Current

The FSP3307 have a built-in Schottky diode.
When supply voltage is applied to the $\mathrm{V}_{\text {IN }} \mathrm{pin}$, the voltage differencebetween $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OuT }}$ generates inrush current flowing from input through the inductor and the Schottky diodeto chargetheoutput capacitor to V_{IN}. Themaximum current the Schottky diode in the FSP3307 can sustain is 1 A . The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1 A . The peak inrush current can be calculated as follows:
$\mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{N}}-0.6}{\mathrm{~L} \cdot \omega} \cdot \exp \left[-\frac{\alpha}{\omega} \cdot \arctan \left(\frac{\omega}{\alpha}\right)\right] \cdot \sin \left[\arctan \left(\frac{\omega}{\alpha}\right)\right]$
$\alpha=\frac{r+1.5}{2 \cdot L}$
$\omega=\sqrt{\frac{1}{L \cdot C}-\frac{(r+1.5)^{2}}{4 \cdot L^{2}}}$
where L is the inductance, r is the resistance of the inductor and C is the output capacitance. For low DCR inductors, which is usually the case for this application, the peak inrush current can be simplified as follows:

$$
I_{P}=\frac{V_{N}-0.6}{L \cdot \omega} \cdot \exp \left(-\frac{\alpha}{\omega} \cdot \frac{\pi}{2}\right)
$$

Table 3 gives inrush peak currents for some component selections.

Table 3. Inrush Peak Current

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathrm{r}(\Omega)$	$\mathrm{L}(\mu \mathrm{H})$	$\mathbf{C}(\mu \mathrm{F})$	$\mathrm{I}_{\mathbf{P}}(\mathrm{A})$
5	0.5	22	0.22	0.38
5	0.5	22	1	0.70
3.6	0.5	22	0.22	0.26
5	0.5	33	1	0.60

LED Current and Dimming Control

TheLEDcurrent is controlled by thefeedback resistor (R1 in Figure 1) and the feedback reference voltage.

$$
I_{L E D}=V_{\text {FB }} / R_{\text {rB }}
$$

The CTRL pin controls the feedback reference voltage as shown in the Typical Performance Characteristics. For CTRL higher than 1.8 V , thefeedback reference is 200 mV , which results in full LED current. CTRL pin can be used as dimming control when CTRL voltage is between 200 mV to 1.5 V . In order to have accurate LBD current, precision resistors are preferred (1% is recommended). The formula and table for $\mathrm{R}_{\nrightarrow}$ selection are shown below.

$$
\begin{equation*}
R_{\text {RB }}=200 \mathrm{mV} / \mathrm{L}_{\text {LeD-Full }} \tag{1}
\end{equation*}
$$

Table 4. R FB Resistor Value Selection

FULL I $_{\text {LED }}(\mathrm{mA})$	R1 (Ω)
5	40.0
10	20.0
15	13.3
20	10.0

The filtered PWM signal can be considered as an adjustable DCvoltage. It can be used to adjust the CTRL voltage source in dimming control. The circuit is shown in Fgure 6. Thecorner frequency of R1 C1 should belower than the freqency of the PWM signal. R1 needs to be much smaller thantheinternal impedanceintheCTRLpin, which is $50 \mathrm{k} \Omega$.

Figure 6. Dimming Control Using a Filtered PWM Signal

APPLICATIONS INFORMATION

Dimming Using Direct PWM

Unlike the FSP3307 does not have internal soft-start. Althoughtheinput current is higher during start-up, the absence of soft-start allows the CTRL pin to be directly driven with a PWM signal for dimming. A zero percent duty cyclesets theLEDcurrent tozero, while 100\% duty cycle sets it to full current. Average LED current increases proportionally with the duty cycle of the PWM signal. PWMfrequency should bebetween 1 kHzand 10 kHz for best performance. The PWM signal should be at least 1.8 V in magnitude; lower voltage will lower the feedback voltage as shown in Equation 1. Waveforms are shown for a 1kHz PWM and 10kHz PWM signal in Figures 7a and 7b respectively.

Figure 7a.

Figure 7b.

Open-Circuit Protection

The FSP3307 have an internal open-circuit protection circuit. In the cases of output open circuit,when the LBDs are disconnected from the circuit or the LEDs fail, the VOUT is clamped at 30V. The FSP3307 will then switch at a very low frequency to
minimizethe input current. $\mathrm{V}_{\text {Or }}$ and input current during output open circuit are shown in the Typical Performance Characteristics.

Board Layout Consideration

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximizeefficiency, switch riseandfall times aremade as short as possible. To prevent electromagnetic interference (BM) problems, proper layout of the high frequency switching path is essential. Place Cour next to the $\mathrm{V}_{\text {our }}$ pin. Always use a ground plane under the switching regulator to minimize interplane coupling. In addition, the ground connection for the feedback resistor R1 should be tied directly to the GND pin and not shared with any other component, ensuring aclean, noise-freeconnection. Recommended component placement is shown in Figure 8.

Figure 8. Recommended Component Placement

TYPICAL APPLICATIONS

Li-Ion to Two White LEDs

Li-Ion to Three White LEDs

TYPICAL APPLICATIONS

Li-Ion to Five White LEDs

PACKAGE DESCRIPTION

S6 Package
6-Lead Plastic SOT-23
(Reference LTC DWG \# 05-08-1636)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

TYPICAL APPLICATIONS

Li-Ion to Six White LEDs

CIN: TAIYO YUDEN JMK107BJ105
Cout: TAIYO YUDEN GMK212BJ474
L1: MURATA LQH32CN470

